Evidence for social facilitation of preening in the common tern

BRIAN G. PALESTIS & JOANNA BURGER
Department of Ecology, Evolution and Natural Resources, Rutgers University

(Received 15 August 1997; initial acceptance 4 November 1997; final acceptance 6 March 1998; MS. number: A8002)

ABSTRACT

Social facilitation of reproductive behaviour has been studied extensively in gulls and terns, but social facilitation of preening has been reported only anecdotally, and has not been previously quantified. We studied a common tern, Sterna hirundo, colony during the summers of 1996 and 1997 to test for socially facilitated preening. Scan sampling provided evidence of spatial and temporal synchrony of preening behaviour. Preening occurred more often than expected in groups of three or more neighbours. Breeding pairs also preened simultaneously more often than expected. In loafing (resting) areas, the proportion of preeners present increased with tern density. Behavioural observations suggest that preening spread from neighbour to neighbour. The observed clumping in preening behaviour could not be explained by differences in date, time of day or weather. Social facilitation of preening and other maintenance behaviour may be an important aspect of group living that is often overlooked.
coincided more frequently in time than expected at random, and he often observed preening behaviour spreading from the dominant individual to the rest of the group. Other studies of preening are merely suggestive of social facilitation. Gauthier & Cyr (1990) found preening to be more common among red-winged blackbirds (Agelaius phoeniceus) in groups than when they were alone, and Nicol (1989) found that domestic hens, Gallus gallus domesticus, preened more often when familiar pen mates were placed in close proximity than when they were placed 1 m apart. Preening occurred simultaneously among neighbouring Bengalese finches, Lonchura striata domestica, more often than expected (Birke 1974), and was more strongly synchronized between pair-bonded than among nonpair-bonded zebra finches, Taeniopygia guttata (Caryl 1976). Evans (1970) demonstrated weak, but significant, synchrony of preening in another finch, the red avadavat, Amandava amandava. In a test of mate choice in rock doves, Columba livia, Clayton (1990) found a significant correlation among male stimulus pairs in the proportion of time spent grooming. However, synchronous preening alone does not necessarily imply social facilitation (Crook 1961; Birke 1974; Gochfeld 1980; Clayton 1990), as activity cycles, weather and social stimulation may also synchronize maintenance behaviour.

Colonial birds are ideal for the study of social facilitation in the field, as many individuals can be observed simultaneously in a fixed location. Social facilitation of reproductive behaviour, aggressive encounters and predator mobbing have been previously demonstrated in colonies of gulls and terns (Southern 1974; Gochfeld 1980; Burger & Gochfeld 1991). Reports of socially facilitated preening among gulls and terns (Laridae) are largely anecdotal. Preening has been observed spreading from neighbour to neighbour in common terns (Palmer 1941), black terns, Chlidonias niger (Goodwin 1959), herring gulls, Larus argentatus (Van Rijn 1977) and great black-backed gulls, Larus marinus (B.G. Palestis, personal observation). However, social facilitation of preening behaviour has not been quantitatively tested in any larid species. In this study, we quantified preening behaviour in the common tern to test for social facilitation of preening and to rule out other synchronizing factors. We selected common terns for study, because anecdotal evidence for socially facilitated preening exists for this species (Palmer 1941) and other aspects of common tern preening have been described in detail (Van Iersel & Bol 1958). We tested the null hypotheses that there is no synchrony in preening; alternatively, that any synchrony in preening results from factors other than social facilitation.

METHODS

This study took place during the summers of 1996 and 1997 on Pettit Island, a 0.3 hectare salt marsh island in Manahawkin Bay in New Jersey. The island is more than 90% covered with Spartina grasses (Burger & Gochfeld 1991). Approximately 70 and 50 pairs of common terns nested on Pettit Island in 1996 and 1997, respectively. The terns nested on wrack (mats of dead vegetation) along the edges of the island, and often loafed on three duck blinds (1.2 × 3.2 m wooden boxes) present on the island. We made observations with binoculars from a small boat anchored approximately 20 m from the island, or occasionally from a canvas blind in the centre of the island. Within 5 min after our arrival, the terns settled down and appeared to be undisturbed by our presence. We made observations from 6 June to 2 August in 1996 and from 26 May to 2 July in 1997, covering nearly the entire breeding cycle in 1996. The distribution of observation times throughout the day was approximately evenly spread between 0800 and 1500 hours, with observations between 1500 and 1930 hours occurring less frequently. We collected quantitative data via scan sampling (see below). We also recorded behavioural observations ad libitum between scans and between blocks of scans. We collected information on the effect of tern density on preening only from terns that were resting on duck blinds, as the blinds provided a fixed area where density increased with the number of individuals present.

To estimate accurately the frequency of a particular behaviour with instantaneous sampling, it is necessary to use interscan intervals as short as is practical (Martin & Bateson 1993). On the other hand, when scan samples are used as independent data points the interval must be longer than the duration of the behaviour of interest (Martin & Bateson 1993). We performed instantaneous sampling at 2-min intervals to measure the frequency of preening among adult terns. Because we calculated the proportion of individuals preening within a particular block of scans (see below) and within a particular treatment (nesting versus loafing areas, tern density), we obtained only one frequency data point per treatment per block of scans. Whenever we treated individual scans as independent data points, however, we only used scans separated by 8 min or more. To ensure that 8 min was a reasonable interval length, we timed 17 preening bouts with a stopwatch. The longest bout recorded lasted 7.5 min, and the median length of preening bouts was only 128 s. Additionally, although we did not keep track of individual terns, it was apparent that there was usually considerable turnover of individuals within 8 min, particularly in loafing areas. Therefore it is unlikely that we repeatedly sampled the same individuals from one scan to the next.

We performed 1129 and 572 scans in 1996 and 1997, respectively, each from left to right along an edge of the colony across at least 10 nesting territories and one or two duck blinds. We divided scans into blocks by the hour of the day in which they were performed (61 blocks in 1996 and 52 in 1997). Because we calculated the frequency of preening as the mean proportion of stationary (i.e. not flying or walking) terns preening, the values obtained overestimated the actual frequency of preening in the colony.

Because we performed scans from neighbour to neighbour, we were able to observe both the spatial and the temporal clumping of preening. Scan sampling provides a conservative test for synchronous preening because tern
RESULTS

The mean (±SE) proportion of stationary adult terns in the colony that were engaged in preening behaviour at a given time was 0.35 ± 0.01 (N=61 blocks of scans) in 1996 and 0.31 ± 0.02 (N=52) in 1997. In other words, terns with an opportunity to preen (i.e. not flying or walking) spent approximately 30–35% of their time preening during the 1996 and 1997 breeding seasons. Terns loafing on duck blinds preened more frequently than those on or near nests. In 1996, the frequency of preening was 0.47 ± 0.03 (N=43) on duck blinds and 0.28 ± 0.02 (N=61) in nesting areas (Wilcoxon signed-ranks test: Z=4.65, P<0.0001). In 1997, the frequency of preening was 0.46 ± 0.02 (N=52) on duck blinds and 0.22 ± 0.01 (N=52) in nesting areas (Z=5.88, P<0.0001). However, the mean frequency of preening by lone terns on duck blinds was only 0.18 ± 0.06 (N=24) in 1996 and 0.29 ± 0.04 (N=33) in 1997 (Fig. 1). Therefore, when only one tern was present on a duck blind, the frequency of preening was similar to that observed in nesting areas in 1997 (Mann–Whitney U test: Z=0.68, P=0.495), and was significantly lower than the frequency of preening in nesting areas in 1996 (Z=2.11, P<0.05).

Within a fixed area (the tops of rectangular duck blinds), the proportion of individuals preening increased greatly with the number of terns present. When only one tern was present on a duck blind, the frequency of preening was low (see above). The relationship between tern density and the per capita frequency of preening was best described with a third-degree polynomial in 1996 (Y=0.075+0.14X–0.14X^2+0.004X^3; F_{3,309}=20.21, P<0.0001), as preening increased, then levelled off, and then increased again at the highest tern densities (Fig. 1). In 1997 the range of tern densities observed was not as great as in 1996, and preening simply increased and then gradually levelled off with increasing tern density (Fig. 1; Y=0.297+0.049X–0.002X^2; F_{2,205}=8.54, P<0.0005). The proportion of individuals preening on duck blinds was highly variable, and tern density explained little of this variation (r^2=0.165 in 1996 and 0.070 in 1997).

When both members of a breeding pair were present in a territory, the pair tended to synchronize preening. Breeding pairs preened simultaneously more often than expected by chance (1996: X^2=28.00, P<0.0001; 1997: X^2=48.57, P<0.0001; Table 1). Expected numbers were generated based on the proportion of these individuals that were preening, 0.34 in 1996 and 0.26 in 1997. These proportions were similar to the mean frequencies of preening obtained in nesting areas (see above).

The size of exclusive clumps of preeners (i.e. N individuals in a row, from left to right across an edge of the colony, all preening but surrounded by nonpreeners) differed significantly from the expected distribution if no social facilitation occurred (1996: X^2=849.36, P<0.0001; 1997: X^2=274.11, P<0.0001; Table 2). We calculated this expected distribution using the mean proportion of stationary terns preening simultaneously, 0.35 in 1996 and 0.31 in 1997 (see above). The probability of preening occurring in N consecutive individuals equalled 0.35^N (or 0.31^N). The probability of a group of preeners of size N occurring was therefore 0.35^N minus the probabilities for groups larger than N. Lone preeners occurred less frequently than expected, while groups of three or more preeners in a row were more common than expected (Table 2).

The observed synchrony in preening could not be explained by time of day, date or weather. Time of day

<table>
<thead>
<tr>
<th>Table 1. Synchronous preening in breeding pairs*</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
</tr>
<tr>
<td>----------</td>
</tr>
<tr>
<td>Both preen</td>
</tr>
<tr>
<td>One preens</td>
</tr>
<tr>
<td>Neither preens</td>
</tr>
</tbody>
</table>

*The observed and expected frequencies of simultaneous preening among mated pairs are shown for 1996 and 1997. Expected numbers are calculated based on the proportion of these individuals that were observed preening in 1996 (0.34) and in 1997 (0.26).
did not have a significant effect on the frequency of preening in either year (1996: ANOVA, \(F_{2,19} = 0.88, P = 0.429 \); 1997: \(F_{1,42} = 1.71, P = 0.117 \)). The mean (\(\pm SE \)) proportion of individuals preening tended to be highest around noon (0.38 \(\pm 0.02 \): 1100–1300 hours in 1996; 0.35 \(\pm 0.03 \) in 1997), but much variation existed (SD=0.14 in 1996, 0.12 in 1997). Although the frequency of preening behaviour varied from day to day, there was no correlation between preening frequency and date of observation (1996: \(F_{8,42} = 1.71, P = 0.017 \); 1997: \(F_{1,16} = 0.37, P = 0.647 \)), indicating no trend within the breeding season. There was also no correlation between preening and ambient temperature (1996: no data; 1997: \(F_{1,16} = 0.22, P = 0.647 \)), approximate percent cloud cover (1996: \(F_{1,21} = 1.46, P = 0.241 \); 1997: \(F_{1,16} = 0.75, P = 0.400 \)), or precipitation (1996: \(F_{2,26} = 2.28, P = 0.123 \); 1997: \(F_{2,19} = 0.88, P = 0.429 \)), but we made very few observations during severe weather.

Behavioural observations also suggested that preening is socially facilitated. Preening appeared to spread from neighbour to neighbour, but not to neighbours facing away from the preener. For example, in one observation, five individuals were present on a duck blind and one was preening. Within 2 min, four of the five terns were preening, and one tern, which was facing away from the other four terns, was not preening. Preening in one individual, however, did not always induce preening in a neighbour even when neighbours were looking at each other. In another example, six terns were on a duck blind and none was preening. One individual began to preen, and within 1 min four were preening, but preening did not spread to the other two terns.

DISCUSSION

We found evidence of socially facilitated preening in common terns. Preening appeared to spread from neighbour to neighbour, and was more synchronous than expected by chance. Breeding pairs synchronized their preening, and groups of three or more consecutive neighbours preened more often than expected by chance. Additionally, preening increased in frequency as tern density increased. Even though environmental variables were not correlated with the frequency of preening, variables such as weather would act at a much larger spatial and temporal scale than the synchrony reported here (Clayton 1978).

Much of the evidence for social facilitation of preening comes from terns loafing on duck blinds, but preening occurs more frequently in loafing areas than in nesting areas (Palmer 1941; Van Iersel & Bol 1958; this study). Therefore, before social facilitation can be discussed, the possibility that terns simply go to duck blinds to preen must be considered. Parental care, territorial defence and nest maintenance do not occur in loafing areas, and some of the individuals present may be individuals returning from bathing to preen (Van Iersel & Bol 1958). When only one individual was present on a duck blind, however, the frequency of preening was low. The frequency of preening by lone terns on duck blinds was similar to that seen in nesting areas in 1997, and was actually significantly lower than the frequency of preening in nesting areas in 1996. Social facilitation may therefore play a large role in increasing the frequency of preening in loafing areas. On duck blinds, no vegetation is present to decrease visibility, and individuals are in close proximity to each other. In contrast, within the colony, vegetation is quite dense and neighbours are more distant from each other. The difference in the frequency of preening between loafing and nesting areas may be smaller in beach colonies, where little vegetation is present to decrease visibility among neighbours.

Terns preened more often as the number of individuals present in a fixed area (the tops of the duck blinds) increased. As the number of individuals increases, the likelihood that at least one will happen to preen will increase, perhaps allowing preening to spread more frequently to neighbours. With increased density, individuals are also in closer visual contact with each other. This result could also simply be an effect of crowding and displacement preening. Displacement preening seems an unlikely explanation for the increase in preening with density, however, because preening bouts rarely resembled the quick bouts characteristic of displacement preening (Van Iersel & Bol 1958). Rapid, incomplete preening bouts are less likely to be recorded by scan sampling because of their short duration. Additionally, displacement preening among common terns is most frequent during nest relief (Van Iersel & Bol 1958), and may explain some of the observed synchrony in preening among breeding pairs, but not among individuals on duck blinds. It is also unlikely that the increase in preening with increased tern density resulted from aggressive display. Van Iersel & Bol (1958) found displacement preening to be common during aggression only when terns left their nests during territorial disputes. Aggression on duck blinds consisted of simple displacements, not territorial disputes.

Socially facilitated preening may be common to group-living birds, but this phenomenon has received very little

<table>
<thead>
<tr>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>Expected</td>
<td>997</td>
<td>560</td>
<td>473</td>
<td>310</td>
</tr>
<tr>
<td>Observed</td>
<td>173</td>
<td>86</td>
<td>169</td>
<td>110</td>
</tr>
<tr>
<td>Expected</td>
<td>40</td>
<td>18</td>
<td>90</td>
<td>48</td>
</tr>
<tr>
<td>Observed</td>
<td>11</td>
<td>4</td>
<td>46</td>
<td>14</td>
</tr>
<tr>
<td>Expected</td>
<td>3</td>
<td>1</td>
<td>27</td>
<td>8</td>
</tr>
<tr>
<td>Observed</td>
<td>1</td>
<td>0</td>
<td>8</td>
<td>3</td>
</tr>
<tr>
<td>Expected</td>
<td>0</td>
<td>0</td>
<td>5</td>
<td>2</td>
</tr>
<tr>
<td>Observed</td>
<td>0</td>
<td>0</td>
<td>2</td>
<td>0</td>
</tr>
<tr>
<td>Expected</td>
<td>0</td>
<td>0</td>
<td>2</td>
<td>0</td>
</tr>
<tr>
<td>Observed</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>1</td>
</tr>
</tbody>
</table>

*Expected frequencies are based on the mean frequency of preening in 1996 and 1997. We combined observations of five or more consecutive preeners in 1996 and observations of four or more consecutive preeners in 1997 to avoid inflating \(\chi^2 \) values.
quantitative study. Much research has focused on the social functions of allogrooming and allopreening, and social facilitation provides another mechanism whereby grooming behaviour may play an important role in the interactions among members of social groups. Further study is needed to determine the adaptive value, physiological mechanisms, ontogeny and spatial and temporal scale of the occurrence of socially facilitated preening.

Acknowledgments

The authors thank L. Kusar for permission to work on Pettit Island, L. I. Seitz, M. Gochfeld, E. H. Burtt, J. R. Lucas and three anonymous referees for comments on early versions of the manuscript. The results of this study were originally presented as a poster at meetings of the Colonial Waterbird Society and the northeast region of the Animal Behavior Society, where the authors benefited from comments by I. C. T. Nisbet, D. A. Shealer and others. B.G.P. is supported by a Marion Johnson fellowship and a teaching assistantship from Rutgers University, and J.B. is supported by the Penn Foundation through the Trust for Public Lands, CRES Department of Energy (AI No. DE-FC01-95EW55084) and NIEHS (ESO 5022).

References

